Cryptogenic gray cutaneous lesions in Risso’s dolphins (Grampus griseus) from La Herradura, Coquimbo, Chile: an emerging disease in calves

Marie-Francoise Van Bressem1*, Macarena Bravo2, Gian Paolo Sanino3

1 Cetacean Conservation Medicine Group (CMED), Peruvian Centre for Cetacean Research (CEPEC), Museo de Delfines, Pucusana, Peru.
2 The Swire Institute of Marine Science, University of Hong Kong, Hong Kong.
3 Centre for Marine Mammal Research—LEVIATHAN, Santiago, Chile.

Abstract

The presence of cryptogenic gray cutaneous (CGC) lesions is reported in Risso’s dolphins (Grampus griseus) occurring in La Herradura de Guayacán Bay and surrounding waters in the Coquimbo region, Chile, in 2011-2012. Images were examined for skin lesions, body condition and state of the dorsal fin. For epidemiological analysis, individuals were split into three categories: adults, immatures and calves. For the calf category, the number of individuals and prevalence of skin conditions were calculated separately for the right (RS) and left (LS) sides, as it was not always possible to accurately match their sides. A total of 749 adults, 44 immatures and 81 (LS) and 99 (RS) calves were photo-identified. Forty-three calves had both sides matched. CGC lesions appeared as small to very large, oval or rounded light gray lesions, sometimes in relief or ulcerated were observed on all visible body areas of 24 (LS) to 36 (RS) calves, five immatures and one adult. At least nine positive calves were neonates. In two calves the CGC lesions persisted for a minimum of 11.5 months. The health of seven to nine calves was visibly degraded. Prevalence of CGC lesions in 43 calves with both sides matched was 23.3% but varied between 29.6% and 36.4% in 81 LS and 99 RS calves, respectively. It was lower in immatures (11.4%, N= 44) and adults (0.14%, N= 749). Pollution of the bay 29.6% and 36.4% in 81 LS and 99 RS calves, respectively. It was lower in immatures and one adult. At least nine positive calves were neonates. In calves the CGC lesions persisted for a minimum of 11.5 months. The health of seven to nine calves was visibly degraded. Prevalence of CGC lesions in 43 calves with both sides matched was 23.3% but varied between 29.6% and 36.4% in 81 LS and 99 RS calves, respectively. It was lower in immatures (11.4%, N= 44) and adults (0.14%, N= 749). Pollution of the bay and surrounding waters may affect the immune system and skin barrier in calves, facilitating the entry of micro-organisms and infection.

Keywords: Risso’s dolphin, Chile, skin disease, calves, cetacean, pollution

Introduction

Skin diseases have been reported in several species of coastal small cetaceans worldwide (33, 36, 37, 41, 43-45, 50). Though most of them eventually resolve, some persist and progress, affecting large areas of the skin (10, 36, 44, 45). Along the Pacific coast of South America, cutaneous diseases of small cetaceans include tattoo skin disease, lobomycosis and lobomycosis-like disease, pale dermatitis, expansive annular lesions, focal skin disease (FSD), pale skin patches, skin lineal anomalies, and ulcerative dermatitis (36, 41, 43-45). With the exception of tattoo skin disease caused by cetacean poxviruses, and lobomycosis of fungal origin, little is known of their etiology and pathogenesis (5, 6, 48). However, anthropogenic factors such as pollution and unusual stress may increase their severity and prevalence (34, 36, 44-46). In Chile, skin diseases have been described in a Bryde’s whale (Balaenoptera brydei), Burmeister’s porpoises (Phocoena spinipinnis), Chilean dolphins (Cephalorhynchus eutropia), common bottlenose dolphins (Tursiops truncatus), and Peale’s dolphins (Lagenorhynchus australis) (36, 42, 43, 45).

Risso’s dolphins (Grampus griseus) are stout Delphinidae less than four meters long with a bulbous head and a very tall, falcate dorsal fin. They accumulate cutaneous white scars through their lifetime and their coloration pattern varies strikingly with age (1, 3, 18). Generally, calves are unscratched, brown-gray with a yellowish, lighter colored head and belly. Immatures are dark grey and lighten while maturing (1). Scratches and tooth rakes increase with age, and older adults are almost white, covered with numerous unpigmented scars that are mainly the result of bites from conspecifics, of fights with squids on which they prey and of wounds of anthropogenic and parasitic origin (1, 3, 11, 18, 29, 30). Nineteen types of marks have been reported on the dorsal fin of G. grampus from the Mediterranean Sea (29). Most are long-lasting in adults and subadults allowing their reliable use for photo-identification (20, 29). Nevertheless, there are no mentions of skin diseases in any populations of this broadly distributed species.

G. griseus occurs in all habitats from coastal to oceanic with preference for mid-temperate waters of the continental shelf and slope (23). In the South-East Pacific they are found from the Equator to southern Chile (23, 31). Relatively little is known of their ecology and the threats they face in this region, but they are occasionally used for human consumption and bait in Peru (15, 40, 47). In December 1997 and January 1998, the Scientific Committee of the International
Whaling Commission conducted the most comprehensive sighting survey of cetaceans in Chilean waters. This produced 26 sighting records of *G. griseus*, ranging between 10 and 106 nautical miles (nm) to the shore, with an average of 61.3 nm, 66.7% over 40 nm and only 4.2% closer than 15 nm (12). These findings were consistent with the pelagic distribution commonly attributed to the species from sighting and stranding records (31) and stomach content (53). However, since the early 2000s groups of Risso’s dolphins have also been frequently recorded in coastal waters of the Atacama and Coquimbo regions of Chile1.

In 2011-2012, groups of *G. griseus* were observed to regularly use La Herradura de Guayacán Bay (29°58'29.8"S, 71°21'28.7"W) and surrounding waters in the Coquimbo region, central Chile (7). During photo-identification studies inside and outside the bay, light gray cutaneous lesions were observed in several calves and neonates, prompting us to examine the macroscopic and epidemiological characteristics of this condition and to evaluate the external health of the affected individuals.

Material & Methods

Study Area and surveys: The study area covered La Herradura Bay and the adjacent coast from Punta Saliente (29°59'58.5"S, 71°24'58.0"W) to Punta Tortuga (29°56'02.1"S, 71°20'33.3"W) (Figure 1). Located in the Coquimbo Region, along the north-central coast of Chile, La Herradura de Guayacán Bay (referred as ‘La Herradura’) is a small and shallow (20 to 60 m) area, measuring about 3.3 km² and protected from the ocean by a 70 m wide entrance channel (4). It is part of a highly productive coastal area (38).

A total of 63 surveys were carried out from April 2011 to May 2012 using a 7 meter long and 1.5 meter high boat with a 25 horsepower outboard engine, with sea states ranging 1-3 of the Beaufort scale. Inside La Herradura, 16 boat surveys were conducted after the dolphins were detected through shore-based scans. Outside the bay, 47 surveys were carried out with a total of 13 encounters (7). The boat approached the dolphins at a steady speed (approximately 2 knots inside the bay and 5 knots outside the bay) parallel to the group. Photographs of dorsal fins and upper bodies were collected using a DSLR Nikon D90 camera with a 70-300 mm zoom lens (7).

Dolphins and Photo-identification: The population structure of *G. griseus* has not yet been assessed in La Herradura and surrounding waters. However, for this contribution we assume that the observed groups are part of a single population. The group size per sighting record ranged from 4 to 143 individuals. Inside the bay the mean and median size of the groups was 63 (SD= 45.3) and 46 individuals, respectively. Most groups (87.5%) included calves and their main activity was milling. Outside the bay, groups had a mean and a median size of 20 (SD= 19.5) and 16 individuals, respectively and only 38.5% of them had calves (7).

Digital images of the dorsal fin were used to identify individuals according to their marks, nicks and notches. Images were processed using the software DISCOVERY to enhance brightness, sharpness and contrast, as described by Gailey and Karzczmarsi (14). Image quality was rated according to sharpness and light exposure as well as to the percentage of the dorsal fin captured in the picture and its’ angle, following the 1-100 rating scale of Karzczmarsi et al. (24). Only good quality images (Q≥75) were used for the identification of individuals. Calves were identified through their regular association with an adult dolphin, presumably the mother. In some cases, calves photographed alone were identified using long-lasting skin marks and/or nicks in their dorsal fin, as described (29).

![Figure 1. (a) Map of Chile with the Coquimbo region in dark grey. (b) La Herradura de Guayacán bay (arrow) and the study area (insert).](image)

Footnote: 1A. Canepa pers. com. to GPS 2004).
Immatures are smaller than adults, have a darker color and a vertical crease along the melon surface (1, 20). Grey dolphins, often heavily scarred with a bulbous head calves including neonates (C). Adults are large light split into three categories: adults (A), immatures (I) and with at least two of the health indicators. Abnormal dorsal fins may be collapsed, bent or disfigured (2, 49). The external health of a dolphin was considered abnormal when the ribs were visible and/or a concave depression was seen behind the head (9). Orange patches are orange or rusty-colored marks that may coalesce to form larger blotches and are likely caused by the colonization of the skin by epidermal diatoms (28, 45). Their presence over several areas of the body may reflect an insufficient development of the skin barrier (28). FSD is characterized by clusters of small, round or oval light or dark skin lesions, not attributable to injuries or scars (36) and which resemble the spotted lesions described by Hart et al. (8). Cutaneous ulcers are defined as open sores, caused by a break in the skin that does not heal. Abnormal dorsal fins may be collapsed, bent or disfigured (2, 49). The external health of a dolphin was considered ‘degraded’ when large and very large CGC lesions were observed together with at least one of the following indicators: cutaneous ulcers, abnormal dorsal fin, extensive orange patches, FSD or visible lost of fat thickness; or when medium to large lesions occurred with at least two of the health indicators. For epidemiological analysis, individuals were split into three categories: adults (A), immatures (I) and calves including neonates (C). Adults are large light grey dolphins, often heavily scarred with a bulbous head and a vertical crease along the melon surface (1, 20). Immatures are smaller than adults, have a darker color and limited to moderate scarring. They include the juvenile and sub-adult categories described by Hartman et al. (20). Calves and neonates have a small size and a dark gray color and are regularly sighted in the proximity of the same adult (1, 20). Neonates are characterized by the presence of fetal folds and a yellowish colour of the head (19). For the (C) category, the number of individuals and prevalence of skin conditions were counted separately for the right (RS) and left side (LS), as it was not always possible to accurately match their sides when photographed without their mothers.

Results

A total of 749 adults, 44 immatures and 81 LS and 99 RS calves were photo-identified during the study (7). Forty-three calves had both sides matched. A skin disease characterized by irregular, oval or rounded light gray lesions that were sometimes slightly in relief or ulcerated (Figure 2a,b,c,d) was observed in 24 (LS) and 36 (RS) calves, five immatures and one adult, inside and outside the bay. Nine (LS) and 11 (RS) positive calves were estimated to be neonates (Figure 2a,b,c). The lesions were observed on all visible body areas and varied in size from small to very large (Figures 2, 3) in all ontogenetic categories. Between 11 (LS) and 18 (RS) calves of whom three (498C, 24C and 422C) were neonates had very large lesions. In 498C they seemed superinfected and had a velvety appearance (Figure 2c). In three other calves (33C, Cria 16 and 394C) the CGC lesions had a stippled pattern reminiscent of tattoo skin disease (Figure 2d). Nine (LS) and 11 (RS) positive calves were re-identified during the study period. In two of them (157C and 10C), the large and very large skin lesions first observed in May 2011, persisted for at least 11.5 months though apparently fading in April 2012 (Figure 3). The external health of seven (RS) to nine (LS) positive calves was considered degraded (Table 1). The most notorious case, calf 492C, had medium to very large CGC lesions on both sides and a slightly bent dorsal fin in May 2011 (Figure 4a). In November 2011, the dorsal fin had collapsed (Figure 4b), ulcers had developed on two CGC lesions and orange patches were observed on most visible body areas (Table 1). A large ulcer was also seen on the rostrum of neonate 498C. Details for all calves and neonates with an altered health are given in Table 1. The external health of the six other positive non-calf dolphins (one adult, five immatures) was considered normal. Minimal prevalence of CGC lesions in 43 calves with both sides matched was 23.3%.
Skin diseases in Risso’s dolphins from Chile.

Figure 2. Grampus griseus. (a) A very large rounded, light gray lesion in neonate 422C on 23 April 2012; (b) Medium and large, ulcerated skin lesions in neonate 749C in May 2011; (c) Large and very large light gray skin lesions with a velvety appearance on the back and flank of neonate 498C in May 2011; (d) Large and very large cutaneous lesions resembling tattoo skin disease in calf 16C on 23 July 2011. Photographs reproduced with permission from authors.

Figure 3. Large and very large light gray cutaneous lesions in calf 157C in May 2011 (a) and April 2012 (b). The lesions seem to be fading in 2012. Photographs reproduced with permission from authors.

Figure 4. Medium to very large light gray cutaneous lesions in calf 492C in May (a) and November 2011 (b). During that six month period, skin lesions had developed on the dorsal fin that had completely bent. Photographs reproduced with permission from authors.
but varied between 29.6% and 36.4% in 81 LS and 99 RS calves respectively. It was lower in immatures (11.4%, N= 44), significantly by Z-score test when LS (z= 2.311; p= 0.021) and RS (z= 3.051; p= 0.0023) calves were considered, but not when only calves with both sides matched were taken into consideration (two-tailed Z-score test, z= 1.468; p= 0.142). The lowest prevalence was seen in adults (0.14%, N= 749).

Discussion
During this study, a skin disorder characterized by oval or rounded, light gray lesions was observed in *G. griseus* free-ranging in La Herradura and surrounding waters, in the Coquimbo region, Chile, between April 2011 and May 2012. Similar lesions were also seen in some calves and immatures photographed in the bay in 2007-2010. To our knowledge this is the first description of a cutaneous disease in this species. CGC lesions have not been observed during other sightings of this species along the coast of Chile even close to the study area, with the most recent sighting record dating from March 2018 at 10 nm Northwest from La Herradura bay (29°50′12.12″S, 71°29′12.12″W). In other small cetaceans, cutaneous disorders most closely resembling the CGC lesions are the expansive annular lesions seen in a false killer whale calf (*Pseudorca crassidens*) from southern Brazil and in a Chilean dolphin calf from northern Chile, the pale dermatitis observed in Guiana dolphins (*Sotalia guianensis*) from Sepetiba and Paranagua Bays, Brazil, the pale skin patches photographed in *C. eutropia* and *L. australis* from the Añihué Reserve, Chile and the whitish marks identified in *T. truncatus* from the Moray Firth, Scotland (36, 45, 51). In three calves the stippled pattern of some CGC lesions resembled that of tattoo skin disease, a poxvirus infection affecting several species of cetaceans worldwide, but rarely found in young calves and neonates (33, 36, 42). However, the role of poxviruses in the development of the CGC lesions is unknown. Further research including histopathology, electron microscopy and molecular studies are necessary to determine the etiology of this disease.

During the present study the CGC lesions were often observed in calves and immatures but less frequently in adults. The light gray color of the latter and their sometimes extensive scarring could have reduced the detection of CGC lesions. However, it is possible that the CGC lesions resolved as calves and immatures grew and their skin matured, as suggested by the fading appearance of some lesions in two calves re-sighted after 11.5 months. The presence of large and very large CGC lesions in neonates indicates that the disease started very early in life. La Herradura Bay and neighboring waters are biologically and chemically polluted by human activities, including toxic spills and ore tailing discharge by mining companies, and the release of municipal wastewaters directly into the ocean (21, 22, 26, 27). The bay is home to the most important iron landing port in Chile’s IV Region, a fish factory, algae and shellfish farming facilities and a yacht club. In addition, fishing boats and large vessels servicing the local iron company regularly transit through these waters. Finally, mining waste has been disposed north of the study area, along the coast and in the ocean of the Atacama region since 1978, at rates sometimes exceeding 4700 m³ per day despite the fact that its health effects on humans, cetaceans and other marine life are unknown (39). Pollutants present in the bay and surrounding waters may alter the immature skin barrier in calves, facilitating the entry of micro-organisms and subsequent infection (28). Besides, they may also affect their fragile immune system, thus further favoring the development of infectious diseases, as described in other odontocete species (16, 17, 34). This possibility should be further explored. Our findings highlight the importance of applying the precautionary principle and to prevent all mining waste and untreated wastewaters from accessing the sea.

Miscellaneous skin lesions occur in odontocete calves worldwide, with prevalence levels varying markedly between them (25, 33, 35, 36, 43, 45, 51). Although some skin conditions like the orange marks seem of little concern, others like expansive annular lesions, granulomatous diseases (including lobomycosis) and some ulcerative cutaneous conditions may have a negative impact on the general health and survival of the affected calves (10, 13, 25, 35, 45). The emergence of CGC lesions in calves of Risso’s dolphins from Northern Chile is worrisome and should be further monitored. Whenever possible samples should be collected for histology and microbiology to determine the etiology of CGC and examine its zoonotical potential, especially considering the density of human activities in this area. The occurrence of such lesions should also be investigated in other species of small cetaceans from this and other Chilean regions, such as southern Huasco Port, a mining waste disposal area in the Atacama region.

footnote 2 O. Yates, personal communication 3 GP Sanino, unpublished data
<table>
<thead>
<tr>
<th>Ind</th>
<th>Age</th>
<th>Side</th>
<th>CGC lesions</th>
<th>Health index</th>
<th>Bay Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number</td>
<td>Size</td>
<td>Duration</td>
</tr>
<tr>
<td>14C</td>
<td>Neo</td>
<td>LS</td>
<td>3</td>
<td>Medium to large</td>
<td>Unknown</td>
</tr>
<tr>
<td>103/74C</td>
<td>Neo</td>
<td>Both</td>
<td>4-6</td>
<td>Medium to large</td>
<td>Unknown</td>
</tr>
<tr>
<td>268C</td>
<td>Neo</td>
<td>LS</td>
<td>>10</td>
<td>Small to large</td>
<td>6 months</td>
</tr>
<tr>
<td>498C</td>
<td>Neo</td>
<td>RS</td>
<td>3</td>
<td>Medium to very large</td>
<td>Unknown</td>
</tr>
<tr>
<td>749C</td>
<td>Neo</td>
<td>LS</td>
<td>6</td>
<td>Medium to large</td>
<td>Unknown</td>
</tr>
<tr>
<td>7C</td>
<td>Calf</td>
<td>LS</td>
<td>6</td>
<td>Small to medium</td>
<td>Unknown</td>
</tr>
<tr>
<td>101C</td>
<td>Calf</td>
<td>Both</td>
<td>10</td>
<td>Small to very large</td>
<td>Unknown</td>
</tr>
<tr>
<td>348C</td>
<td>Calf</td>
<td>RS</td>
<td>>10</td>
<td>Small to large</td>
<td>2 weeks</td>
</tr>
<tr>
<td>365C</td>
<td>Calf</td>
<td>RS</td>
<td>3</td>
<td>Medium</td>
<td>7 months</td>
</tr>
<tr>
<td>492C</td>
<td>Calf</td>
<td>Both</td>
<td>8</td>
<td>Medium to very large</td>
<td>6 months</td>
</tr>
<tr>
<td>593C</td>
<td>Calf</td>
<td>LS</td>
<td>>10</td>
<td>Small to very large</td>
<td>Unknown</td>
</tr>
<tr>
<td>SM4C</td>
<td>Calf</td>
<td>LS</td>
<td>6</td>
<td>Medium to large</td>
<td>Unknown</td>
</tr>
<tr>
<td>SM7C</td>
<td>Calf</td>
<td>RS</td>
<td>7</td>
<td>Very large</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Table 1: Details on Risso’s dolphins (Grampus griseus) calves and neonates affected by cryptogenic gray cutaneous (CGC) lesions and whose health condition was considered ‘altered’. All individuals (Ind) were photographed in April 2011 to May 2012 in La Herradura de Guayacán Bay and surrounding waters, Chile. Dolphin side is LS-left, RS-right. Bay location: INS=inside the Bay; OUT= outside the Bay. Age is designated as neonate (Neo) or calf.
Acknowledgments

We kindly thank Dr. Koen Van Waerebeek for his opinion on the skin lesions and for comments on the manuscript, Oliver Yates for revising some of his pictures of G. griseus in La Herradura Bay for the presence of skin lesions, Ben Burville for editing the manuscript, three anonymous reviewers for their constructive comments on the manuscript, the Facultad de Ciencias del Mar de la Universidad Católica del Norte for lending their boat for the surveys and The Swire Institute of Marine Science. We also kindly acknowledge boat captain Freddy González for his help during the surveys.

References

Skin diseases in Risso's dolphins from Chile.

